// Copyright 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Lovell Fuller and contributors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "common.h" #include "operations.h" using vips::VImage; using vips::VError; namespace sharp { /* * Tint an image using the specified chroma, preserving the original image luminance */ VImage Tint(VImage image, double const a, double const b) { // Get original colourspace VipsInterpretation typeBeforeTint = image.interpretation(); if (typeBeforeTint == VIPS_INTERPRETATION_RGB) { typeBeforeTint = VIPS_INTERPRETATION_sRGB; } // Extract luminance VImage luminance = image.colourspace(VIPS_INTERPRETATION_LAB)[0]; // Create the tinted version by combining the L from the original and the chroma from the tint std::vector chroma {a, b}; VImage tinted = luminance .bandjoin(chroma) .copy(VImage::option()->set("interpretation", VIPS_INTERPRETATION_LAB)) .colourspace(typeBeforeTint); // Attach original alpha channel, if any if (HasAlpha(image)) { // Extract original alpha channel VImage alpha = image[image.bands() - 1]; // Join alpha channel to normalised image tinted = tinted.bandjoin(alpha); } return tinted; } /* * Stretch luminance to cover full dynamic range. */ VImage Normalise(VImage image) { // Get original colourspace VipsInterpretation typeBeforeNormalize = image.interpretation(); if (typeBeforeNormalize == VIPS_INTERPRETATION_RGB) { typeBeforeNormalize = VIPS_INTERPRETATION_sRGB; } // Convert to LAB colourspace VImage lab = image.colourspace(VIPS_INTERPRETATION_LAB); // Extract luminance VImage luminance = lab[0]; // Find luminance range VImage stats = luminance.stats(); double min = stats(0, 0)[0]; double max = stats(1, 0)[0]; if (min != max) { // Extract chroma VImage chroma = lab.extract_band(1, VImage::option()->set("n", 2)); // Calculate multiplication factor and addition double f = 100.0 / (max - min); double a = -(min * f); // Scale luminance, join to chroma, convert back to original colourspace VImage normalized = luminance.linear(f, a).bandjoin(chroma).colourspace(typeBeforeNormalize); // Attach original alpha channel, if any if (HasAlpha(image)) { // Extract original alpha channel VImage alpha = image[image.bands() - 1]; // Join alpha channel to normalised image return normalized.bandjoin(alpha); } else { return normalized; } } return image; } /* * Contrast limiting adapative histogram equalization (CLAHE) */ VImage Clahe(VImage image, int const width, int const height, int const maxSlope) { return image.hist_local(width, height, VImage::option()->set("max_slope", maxSlope)); } /* * Gamma encoding/decoding */ VImage Gamma(VImage image, double const exponent) { if (HasAlpha(image)) { // Separate alpha channel VImage alpha = image[image.bands() - 1]; return RemoveAlpha(image).gamma(VImage::option()->set("exponent", exponent)).bandjoin(alpha); } else { return image.gamma(VImage::option()->set("exponent", exponent)); } } /** * Produce the "negative" of the image. */ VImage Negate(VImage image, bool const negateAlpha) { if (HasAlpha(image) && !negateAlpha) { // Separate alpha channel VImage alpha = image[image.bands() - 1]; return RemoveAlpha(image).invert().bandjoin(alpha); } else { return image.invert(); } } /* * Gaussian blur. Use sigma of -1.0 for fast blur. */ VImage Blur(VImage image, double const sigma) { if (sigma == -1.0) { // Fast, mild blur - averages neighbouring pixels VImage blur = VImage::new_matrixv(3, 3, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0); blur.set("scale", 9.0); return image.conv(blur); } else { // Slower, accurate Gaussian blur return image.gaussblur(sigma); } } /* * Convolution with a kernel. */ VImage Convolve(VImage image, int const width, int const height, double const scale, double const offset, std::unique_ptr const &kernel_v ) { VImage kernel = VImage::new_from_memory( kernel_v.get(), width * height * sizeof(double), width, height, 1, VIPS_FORMAT_DOUBLE); kernel.set("scale", scale); kernel.set("offset", offset); return image.conv(kernel); } /* * Recomb with a Matrix of the given bands/channel size. * Eg. RGB will be a 3x3 matrix. */ VImage Recomb(VImage image, std::unique_ptr const &matrix) { double *m = matrix.get(); image = image.colourspace(VIPS_INTERPRETATION_sRGB); return image .recomb(image.bands() == 3 ? VImage::new_from_memory( m, 9 * sizeof(double), 3, 3, 1, VIPS_FORMAT_DOUBLE ) : VImage::new_matrixv(4, 4, m[0], m[1], m[2], 0.0, m[3], m[4], m[5], 0.0, m[6], m[7], m[8], 0.0, 0.0, 0.0, 0.0, 1.0)); } VImage Modulate(VImage image, double const brightness, double const saturation, int const hue, double const lightness) { if (HasAlpha(image)) { // Separate alpha channel VImage alpha = image[image.bands() - 1]; return RemoveAlpha(image) .colourspace(VIPS_INTERPRETATION_LCH) .linear( { brightness, saturation, 1}, { lightness, 0.0, static_cast(hue) } ) .colourspace(VIPS_INTERPRETATION_sRGB) .bandjoin(alpha); } else { return image .colourspace(VIPS_INTERPRETATION_LCH) .linear( { brightness, saturation, 1 }, { lightness, 0.0, static_cast(hue) } ) .colourspace(VIPS_INTERPRETATION_sRGB); } } /* * Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen. */ VImage Sharpen(VImage image, double const sigma, double const m1, double const m2, double const x1, double const y2, double const y3) { if (sigma == -1.0) { // Fast, mild sharpen VImage sharpen = VImage::new_matrixv(3, 3, -1.0, -1.0, -1.0, -1.0, 32.0, -1.0, -1.0, -1.0, -1.0); sharpen.set("scale", 24.0); return image.conv(sharpen); } else { // Slow, accurate sharpen in LAB colour space, with control over flat vs jagged areas VipsInterpretation colourspaceBeforeSharpen = image.interpretation(); if (colourspaceBeforeSharpen == VIPS_INTERPRETATION_RGB) { colourspaceBeforeSharpen = VIPS_INTERPRETATION_sRGB; } return image .sharpen(VImage::option() ->set("sigma", sigma) ->set("m1", m1) ->set("m2", m2) ->set("x1", x1) ->set("y2", y2) ->set("y3", y3)) .colourspace(colourspaceBeforeSharpen); } } VImage Threshold(VImage image, double const threshold, bool const thresholdGrayscale) { if (!thresholdGrayscale) { return image >= threshold; } return image.colourspace(VIPS_INTERPRETATION_B_W) >= threshold; } /* Perform boolean/bitwise operation on image color channels - results in one channel image */ VImage Bandbool(VImage image, VipsOperationBoolean const boolean) { image = image.bandbool(boolean); return image.copy(VImage::option()->set("interpretation", VIPS_INTERPRETATION_B_W)); } /* Perform bitwise boolean operation between images */ VImage Boolean(VImage image, VImage imageR, VipsOperationBoolean const boolean) { return image.boolean(imageR, boolean); } /* Trim an image */ VImage Trim(VImage image, double const threshold) { if (image.width() < 3 && image.height() < 3) { throw VError("Image to trim must be at least 3x3 pixels"); } // Top-left pixel provides the background colour VImage background = image.extract_area(0, 0, 1, 1); if (HasAlpha(background)) { background = background.flatten(); } int left, top, width, height; left = image.find_trim(&top, &width, &height, VImage::option() ->set("background", background(0, 0)) ->set("threshold", threshold)); if (width == 0 || height == 0) { if (HasAlpha(image)) { // Search alpha channel VImage alpha = image[image.bands() - 1]; VImage backgroundAlpha = alpha.extract_area(0, 0, 1, 1); left = alpha.find_trim(&top, &width, &height, VImage::option() ->set("background", backgroundAlpha(0, 0)) ->set("threshold", threshold)); } if (width == 0 || height == 0) { throw VError("Unexpected error while trimming. Try to lower the tolerance"); } } return image.extract_area(left, top, width, height); } /* * Calculate (a * in + b) */ VImage Linear(VImage image, double const a, double const b) { if (HasAlpha(image)) { // Separate alpha channel VImage alpha = image[image.bands() - 1]; return RemoveAlpha(image).linear(a, b).bandjoin(alpha); } else { return image.linear(a, b); } } /* * Ensure the image is in a given colourspace */ VImage EnsureColourspace(VImage image, VipsInterpretation colourspace) { if (colourspace != VIPS_INTERPRETATION_LAST && image.interpretation() != colourspace) { image = image.colourspace(colourspace, VImage::option()->set("source_space", image.interpretation())); } return image; } /* * Split and crop each frame, reassemble, and update pageHeight. */ VImage CropMultiPage(VImage image, int left, int top, int width, int height, int nPages, int *pageHeight) { if (top == 0 && height == *pageHeight) { // Fast path; no need to adjust the height of the multi-page image return image.extract_area(left, 0, width, image.height()); } else { std::vector pages; pages.reserve(nPages); // Split the image into cropped frames for (int i = 0; i < nPages; i++) { pages.push_back( image.extract_area(left, *pageHeight * i + top, width, height)); } // Reassemble the frames into a tall, thin image VImage assembled = VImage::arrayjoin(pages, VImage::option()->set("across", 1)); // Update the page height *pageHeight = height; return assembled; } } /* * Split into frames, embed each frame, reassemble, and update pageHeight. */ VImage EmbedMultiPage(VImage image, int left, int top, int width, int height, std::vector background, int nPages, int *pageHeight) { if (top == 0 && height == *pageHeight) { // Fast path; no need to adjust the height of the multi-page image return image.embed(left, 0, width, image.height(), VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background)); } else if (left == 0 && width == image.width()) { // Fast path; no need to adjust the width of the multi-page image std::vector pages; pages.reserve(nPages); // Rearrange the tall image into a vertical grid image = image.grid(*pageHeight, nPages, 1); // Do the embed on the wide image image = image.embed(0, top, image.width(), height, VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background)); // Split the wide image into frames for (int i = 0; i < nPages; i++) { pages.push_back( image.extract_area(width * i, 0, width, height)); } // Reassemble the frames into a tall, thin image VImage assembled = VImage::arrayjoin(pages, VImage::option()->set("across", 1)); // Update the page height *pageHeight = height; return assembled; } else { std::vector pages; pages.reserve(nPages); // Split the image into frames for (int i = 0; i < nPages; i++) { pages.push_back( image.extract_area(0, *pageHeight * i, image.width(), *pageHeight)); } // Embed each frame in the target size for (int i = 0; i < nPages; i++) { pages[i] = pages[i].embed(left, top, width, height, VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background)); } // Reassemble the frames into a tall, thin image VImage assembled = VImage::arrayjoin(pages, VImage::option()->set("across", 1)); // Update the page height *pageHeight = height; return assembled; } } } // namespace sharp